Sequence and Series - Class XI

Related Questions with Solutions

Questions

Quetion: 01

Let $a_n, n \in N$ is an A.P. with common difference 'd' and all whose terms are nonzero. If n approaches infinity, then the sum $\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \ldots + \frac{1}{a_na_{n+1}}$ will approach.

approach A.
$$\frac{1}{\mathbf{a_1} \, \mathbf{d}}$$
 B. $\frac{2}{\mathbf{a_1} \, \mathbf{d}}$ C. $\frac{1}{2\mathbf{a_1} \, \mathbf{d}}$ D. $a_1 d$

Solutions

Solution: 01

First term = a common difference = d So, $a_2 = a_1 + d$, $a_3 = a_1 + 2 d$ Given, $\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \ldots + \frac{1}{a_{n+1} a_n}$ $= \frac{1}{d} \left[\frac{d}{a_1 a_2} + \frac{d}{a_2 a_3} + \cdots + \frac{d}{a_{n+1} a_n} \right]$ $= \frac{1}{d} \left[\frac{a_2 - a_1}{a_1 a_2} + \frac{a_3 - a_2}{a_2 a_3} + \cdots + \frac{a_{n+1} - a_n}{a_n a_{n+1}} \right]$ $= \frac{1}{d} \left[\frac{1}{a_1} - \frac{1}{a_2} + \frac{1}{a_2} - \frac{1}{a_3} + \cdots + \frac{1}{a_n} - \frac{1}{a_{n+1}} \right]$ $= \frac{1}{d} \left[\frac{1}{a_1} - \frac{1}{a_{n+1}} \right] = \frac{1}{d} \left[\frac{1}{a_1} - \frac{1}{a_1 + nd} \right]$ $= \frac{1}{a_1} \frac{1}{d}$

Correct Options

Answer:01

Correct Options: A